205 research outputs found

    Targeting BTK for the treatment of FLT3-ITD mutated acute myeloid leukemia

    Get PDF
    Approximately 20% of patients with acute myeloid leukaemia (AML) have a mutation in FMS-like-tyrosine-kinase-3 (FLT3). FLT3 is a trans-membrane receptor with a tyrosine kinase domain which, when activated, initiates a cascade of phosphorylated proteins including the SRC family of kinases. Recently our group and others have shown that pharmacologic inhibition and genetic knockdown of Bruton's tyrosine kinase (BTK) blocks AML blast proliferation, leukaemic cell adhesion to bone marrow stromal cells as well as migration of AML blasts. The anti-proliferative effects of BTK inhibition in human AML are mediated via inhibition of downstream NF-ΞΊB pro-survival signalling however the upstream drivers of BTK activation in human AML have yet to be fully characterised. Here we place the FLT3-ITD upstream of BTK in AML and show that the BTK inhibitor ibrutinib inhibits the survival and proliferation of FLT3-ITD primary AML blasts and AML cell lines. Furthermore ibrutinib inhibits the activation of downstream kinases including MAPK, AKT and STAT5. In addition we show that BTK RNAi inhibits proliferation of FLT3-ITD AML cells. Finally we report that ibrutinib reverses the cyto-protective role of BMSC on FLT3-ITD AML survival. These results argue for the evaluation of ibrutinib in patients with FLT3-ITD mutated AML

    NRF2-driven miR-125B1 and miR-29B1 transcriptional regulation controls a novel anti-apoptotic miRNA regulatory network for AML survival

    Get PDF
    Transcription factor NRF2 is an important regulator of oxidative stress. It is involved in cancer progression, and has abnormal constitutive expression in acute myeloid leukaemia (AML). Posttranscriptional regulation by microRNAs (miRNAs) can affect the malignant phenotype of AML cells. In this study, we identified and characterised NRF2-regulated miRNAs in AML. An miRNA array identified miRNA expression level changes in response to NRF2 knockdown in AML cells. Further analysis of miRNAs concomitantly regulated by knockdown of the NRF2 inhibitor KEAP1 revealed the major candidate NRF2-mediated miRNAs in AML. We identified miR-125B to be upregulated and miR-29B to be downregulated by NRF2 in AML. Subsequent bioinformatic analysis identified putative NRF2 binding sites upstream of the miR-125B1 coding region and downstream of the mir-29B1 coding region. Chromatin immunoprecipitation analyses showed that NRF2 binds to these antioxidant response elements (AREs) located in the 5β€² untranslated regions of miR-125B and miR-29B. Finally, primary AML samples transfected with anti-miR-125B antagomiR or miR-29B mimic showed increased cell death responsiveness either alone or co-treated with standard AML chemotherapy. In summary, we find that NRF2 regulation of miR-125B and miR-29B acts to promote leukaemic cell survival, and their manipulation enhances AML responsiveness towards cytotoxic chemotherapeutics

    PI3KΞ΄ and PI3KΞ³ isoforms have distinct functions in regulating pro-tumoural signalling in the multiple myeloma microenvironment

    Get PDF
    Phosphoinositide-3-kinase and protein kinase B (PI3K-AKT) is upregulated in multiple myeloma (MM). Using a combination of short hairpin RNA (shRNA) lentivirus-mediated knockdown and pharmacologic isoform-specific inhibition we investigated the role of the PI3K p110Ξ³ (PI3KΞ³) subunit in regulating MM proliferation and bone marrow microenvironment-induced MM interactions. We compared this with inhibition of the PI3K p110Ξ΄ (PI3kΞ΄) subunit and with combined PI3kΞ΄/Ξ³ dual inhibition. We found that MM cell adhesion and migration were PI3KΞ³-specific functions, with PI3kΞ΄ inhibition having no effect in MM adhesion or migration assays. At concentration of the dual PI3KΞ΄/Ξ³ inhibitor duvelisib, which can be achieved in vivo we saw a decrease in AKT phosphorylation at s473 after tumour activation by bone marrow stromal cells (BMSC) and interleukin-6. Moreover, after drug treatment of BMSC/tumour co-culture activation assays only dual PI3kΞ΄/Ξ³ inhibition was able to induce MM apoptosis. shRNA lentiviral-mediated targeting of either PI3KΞ΄ or PI3KΞ³ alone, or both in combination, increased survival of NSG mice xeno-transplanted with MM cells. Moreover, treatment with duvelisib reduced MM tumour burden in vivo. We report that PI3KΞ΄ and PI3KΞ³ isoforms have distinct functions in MM and that combined PI3kΞ΄/Ξ³ isoform inhibition has anti-MM activity. Here we provide a scientific rationale for trials of dual PI3kΞ΄/Ξ³ inhibition in patients with MM

    Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings

    Get PDF
    Recently, evidence has emerged that humans approach learning using Bayesian updating rather than (model-free) reinforcement algorithms in a six-arm restless bandit problem. Here, we investigate what this implies for human appreciation of uncertainty. In our task, a Bayesian learner distinguishes three equally salient levels of uncertainty. First, the Bayesian perceives irreducible uncertainty or risk: even knowing the payoff probabilities of a given arm, the outcome remains uncertain. Second, there is (parameter) estimation uncertainty or ambiguity: payoff probabilities are unknown and need to be estimated. Third, the outcome probabilities of the arms change: the sudden jumps are referred to as unexpected uncertainty. We document how the three levels of uncertainty evolved during the course of our experiment and how it affected the learning rate. We then zoom in on estimation uncertainty, which has been suggested to be a driving force in exploration, in spite of evidence of widespread aversion to ambiguity. Our data corroborate the latter. We discuss neural evidence that foreshadowed the ability of humans to distinguish between the three levels of uncertainty. Finally, we investigate the boundaries of human capacity to implement Bayesian learning. We repeat the experiment with different instructions, reflecting varying levels of structural uncertainty. Under this fourth notion of uncertainty, choices were no better explained by Bayesian updating than by (model-free) reinforcement learning. Exit questionnaires revealed that participants remained unaware of the presence of unexpected uncertainty and failed to acquire the right model with which to implement Bayesian updating

    GRP78 Knockdown Enhances Apoptosis via the Down-Regulation of Oxidative Stress and Akt Pathway after Epirubicin Treatment in Colon Cancer DLD-1 Cells

    Get PDF
    INTRODUCTION: The 78-kDa glucose-regulated protein (GRP78) is induced in the cancer microenvironment and can be considered as a novel predictor of responsiveness to chemotherapy in many cancers. In this study, we found that intracellular reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation were higher in GRP78 knockdown DLD-1 colon cancer cells compared with scrambled control cells. METHODOLOGY/PRINCIPAL FINDINGS: Treatment with epirubicin in GRP78 knockdown DLD-1 cells enhanced apoptosis and was associated with decreased production of intracellular ROS. In addition, apoptosis was increased by the antioxidants propyl gallate (PG) and dithiothreitol (DTT) in epirubicin-treated scrambled control cells. Epirubicin-treated GRP78 knockdown cells resulted in more inactivated Akt pathway members, such as phosphorylated Akt and GSK-3Ξ², as well as downstream targets of Ξ²-catenin expression. Knockdown of Nrf2 with small interfering RNA (siRNA) increased apoptosis in epirubicin-treated GRP78 knockdown cells, which suggested that Nrf2 may be a primary defense mechanism in GRP78 knockdown cells. We also demonstrated that epirubicin-treated GRP78 knockdown cells could decrease survival pathway signaling through the redox activation of protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase that negatively regulates the Akt pathway. CONCLUSIONS: Our results indicate that epirubicin decreased the intracellular ROS in GRP78 knockdown cells, which decreased survival signaling through both the Akt pathway and the activation of PP2A. Together, these mechanisms contributed to the enhanced level of epirubicin-induced apoptosis that was observed in the GRP78 knockdown cells

    HIF1Ξ± drives chemokine factor pro-tumoral signaling pathways in acute myeloid leukemia

    Get PDF
    Approximately 80% of patients diagnosed with acute myeloid leukemia (AML) die as a consequence of failure to eradicate the tumor from the bone marrow microenvironment. We have recently shown that stroma-derived interleukin-8 (IL-8) promotes AML growth and survival in the bone marrow in response to AML-derived macrophage migration inhibitory factor (MIF). In the present study we show that high constitutive expression of MIF in AML blasts in the bone marrow is hypoxia-driven and, through knockdown of MIF, HIF1Ξ± and HIF2Ξ±, establish that hypoxia supports AML tumor proliferation through HIF1Ξ± signaling. In vivo targeting of leukemic cell HIF1Ξ± inhibits AML proliferation in the tumor microenvironment through transcriptional regulation of MIF, but inhibition of HIF2Ξ± had no measurable effect on AML blast survival. Functionally, targeted inhibition of MIF in vivo improves survival in models of AML. Here we present a mechanism linking HIF1Ξ± to a pro-tumoral chemokine factor signaling pathway and in doing so, we establish a potential strategy to target AML

    fMRI Evidence for a Dual Process Account of the Speed-Accuracy Tradeoff in Decision-Making

    Get PDF
    Background: The speed and accuracy of decision-making have a well-known trading relationship: hasty decisions are more prone to errors while careful, accurate judgments take more time. Despite the pervasiveness of this speed-accuracy tradeoff (SAT) in decision-making, its neural basis is still unknown. Methodology/Principal Findings: Using functional magnetic resonance imaging (fMRI) we show that emphasizing the speed of a perceptual decision at the expense of its accuracy lowers the amount of evidence-related activity in lateral prefrontal cortex. Moreover, this speed-accuracy difference in lateral prefrontal cortex activity correlates with the speedaccuracy difference in the decision criterion metric of signal detection theory. We also show that the same instructions increase baseline activity in a dorso-medial cortical area involved in the internal generation of actions. Conclusions/Significance: These findings suggest that the SAT is neurally implemented by modulating not only the amount of externally-derived sensory evidence used to make a decision, but also the internal urge to make a response. We propose that these processes combine to control the temporal dynamics of the speed-accuracy trade-off in decisionmaking

    The developmental pattern of stimulus and response interference in a color-object Stroop task: an ERP study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have shown that Stroop interference is stronger in children than in adults. However, in a standard Stroop paradigm, stimulus interference and response interference are confounded. The purpose of the present study was to determine whether interference at the stimulus level and the response level are subject to distinct maturational patterns across childhood. Three groups of children (6–7 year-olds, 8–9 year-olds, and 10–12 year-olds) and a group of adults performed a manual Color-Object Stroop designed to disentangle stimulus interference and response interference. This was accomplished by comparing three trial types. In congruent (C) trials there was no interference. In stimulus incongruent (SI) trials there was only stimulus interference. In response incongruent (RI) trials there was stimulus interference and response interference. Stimulus interference and response interference were measured by a comparison of SI with C, and RI with SI trials, respectively. Event-related potentials (ERPs) were measured to study the temporal dynamics of these processes of interference.</p> <p>Results</p> <p>There was no behavioral evidence for stimulus interference in any of the groups, but in 6–7 year-old children ERPs in the SI condition in comparison with the C condition showed an occipital P1-reduction (80–140 ms) and a widely distributed amplitude enhancement of a negative component followed by an amplitude reduction of a positive component (400–560 ms). For response interference, all groups showed a comparable reaction time (RT) delay, but children made more errors than adults. ERPs in the RI condition in comparison with the SI condition showed an amplitude reduction of a positive component over lateral parietal (-occipital) sites in 10–12 year-olds and adults (300–540 ms), and a widely distributed amplitude enhancement of a positive component in all age groups (680–960 ms). The size of the enhancement correlated positively with the RT response interference effect.</p> <p>Conclusion</p> <p>Although processes of stimulus interference control as measured with the color-object Stroop task seem to reach mature levels relatively early in childhood (6–7 years), development of response interference control appears to continue into late adolescence as 10–12 year-olds were still more susceptible to errors of response interference than adults.</p
    • …
    corecore